JIS College of Engineering
 B. Tech (Information Technology)-5th Semester
 Computer Graphics Assignment
 Paper Code: IT-505C
 Assignment ID: Soham/OSem/2015/IT505C/0006

Computer Graphics is no separate from Mathematics!

Iam: \qquad
Roll: \qquad Date: \qquad
My Full Signature:

1. Express transformation matrices for reflection of a point about any straight line $y=m x+c \quad$ Check and Tally: $\left[\begin{array}{ccc}\cos 2 \theta & \sin 2 \theta & -c \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta & c(1+\cos 2 \theta) \\ 0 & 0 & 1\end{array}\right]$ where $\theta=\tan ^{-1}(\mathbf{m})$
2. A mirror is placed on $X-Y$ plane such that it passes through the points $(2,0)$ and $(0,2)$. What will be the

$$
\triangle \mathrm{ABC} \equiv\left(\begin{array}{ll}
\mathbf{5} & \mathbf{5} \\
\mathbf{3} & \mathbf{4} \\
\mathbf{4} & 7
\end{array}\right)
$$ vertices of $\triangle A B C$ after reflection?

[Check and Tally: Answer should be (-2, -1), (-3, -3), (-5, -2)]
3. Following transformations are applied to $\triangle A B C$ in sequence:
i. Reflection about the X-axis
ii. Reflection about the straight line $y=-x$
iii. Rotation about the origin by 270°

$$
\triangle A B C \equiv\left(\begin{array}{cc}
8 & 2 \\
10 & 4 \\
8 & 6
\end{array}\right)
$$

Find an equivalent single Transformation matrix combining the above 3 transformations. Finally, what do you conclude? [Check and Tally: "I will not tell you beforehand!'"]
4. Perform viewport transformation of the rectangle $A B C D$ to a viewport whose lower left is at the point A and is the entire normalized screen.

$$
A B C D \equiv\left(\begin{array}{cr}
2 & 2 \\
10 & 6 \\
8 & 10 \\
0 & 6
\end{array}\right)
$$ [Check and Tally: $\left[\begin{array}{ccc}0.10 & -\mathbf{0 . 1 0} & 0 \\ 0.05 & \mathbf{0 . 2 0} & 0 \\ 0.85 & \mathbf{1 . 8} & \mathbf{1}\end{array}\right]$

